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HOMOGENEOUS SOLUTIONS AND SAINT-VENANT 
PROBLEMS FOR A NATURALLY TWISTED RODt 

A. N. D R U Z ' ,  N.  A .  P O L Y A K O V  a n d  Yu .  A .  U S T I N O V  

Rostov-on-Don 

(R~a,~t t8 oaot~, 1994) 

The method of homogeneous solutions is used to investigate a three-dimensional problem for a naturally twisted rod. A group 
of elementary solutions is established, enabling an applied theory of naturally twisted rods to be developed without involving 
any hypotheses, by rigonms mathematical methods, as done previously [1] for prismatic rods. It is shown that in the general case 
(arbitrary twist and arbitrmy position of the cr~s-sectional centre of gravity relative to the screw axis) the construction of 
elementary solutions r~luces to solving two types of boundary-value problem in the cross-section, which in turn reduces to 
variational problems fox non-negative operators. A stiffiaess matrix is obtained which relates the components of the principal 
vector and principal momentum of the external stresses to the coefficients of expansions in series of elementary solutions (the 
latter may be considerecl as generalized displacements). The Saint-Venant principle is substantiated. Copyright O 1996 Elsevier 
Science Ltd. 

In the first investigations of the Saint-Venant problems of the stretching, twisting and bending of naturally 
twisted rods [2-5], most attention was paid to stretching-twisting, on the assumption that the non- 
dimensional relative angle of twist if small. 

Based on an a priori assumption concerning the structure of a Saint-Venant-type solution, the three- 
dimensional problem has been reduced [6] to a system of 18 equations, but most of the research has 
been done on the stretching-twisting problem only. 

1. N O T A T I O N  AND F O R M U L A T I O N  OF T H E  B O U N D A R Y - V A L U E  
P R O B L E M  

For brevity, we shall refer to a twisted rod as a "pseudo-cylinder". The concept of  a pseudo-cylinder 
includes such pra~:ical objects as drill-bits, turbine vanes and cylindrical rods. The domain Voecupied 
by a pseudo-cylinder is obtained by screw motion of a plane figure S along the axis x3 of a fixed Cartesian 
system of  coordinates xk. As a parameter  we take the relative angle of twist x and consider it to be 
constant. As in [6], we introduce a co-moving system of coordinates ~ ,  in which the directions of the 

axes (or = 1, 2) are rigidly attached to S as it moves. The radius vector of an arbitrary point of V in 
the co-moving system is written as 

R=~e~; tp=x~ 

e, =ilcosg+i2sint p, e2 =-itsintp+i2costp, e3 =i.~ 

where ik are the utait vectors of the fixed system of coordinates and e, are those of the co-moving one. 
Other  notation: F denotes the lateral surface, 3S is the boundary of S, Nk is the projection of the 

vector of the oute:r normal to F, na is the projection of the external normal to OS onto the appropriate 
axis of the co-moving system of coordinates and ~° a denote the coordinates of points of OS. Unless 
otherwise indicated, Latin subscripts take values from 1 to 3, Greek subscripts take values 1 and 2, and 
summation is assumed to be performed over repeated subscripts. The  projections Nk and na satisfy the 
relationships 

N a=cna, N 3=Ib  

_ 0 lY 0 C = (I + z2b)-)~, b- ~t~t, ~ = d~a I ds 
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Below we shall use the Hiibert spaces H 1 and//2 of three-component complex-valued vector functions 
defined on S and OS, respectively, with inner products 

(at,a2) I = ~ al .a2dS= ~ aklat2dS 
S s 

(al,a2)2 = I al "a2 ds= I aklat2ds 

as well as the space H = H1 x / /2  with inner product 

(al, a2) = (al, a2)i + (at, a2)2 

Throughout, at = {a/el, ak2, ak3}, and dq denotes complex conjugates. 
We shall assume that the lateral surface F of the pseudo-cylinder is unstressed. The equih~rium 

equations and boundary conditions on F may be written in operator notation as follows: 

~(-iO)u - --~2Cu - iOBu + Au = ~t-tK (1.1) 

(E - i~G)ulr = 0 (1.2) 

where u is the vector of displacements, and A, B, C, E and G are matrix operators with the following 
elements 

All = -2(I + X)3 2 - 0 2 - '~2 (D2 - I), AI2 = -(I'+ 2x)310 2 + 2'r2D 

Al 3 =-'t(l+2x)01D, A21 =-(l+2x)3t0 2 -2,~2D 

A22 = - 0  2 - 2(1 + ×)0 2 - '~2(D2 - l), A23 = -~(1 + 2 x ) 0 2 D  

A31 = -$(1 + 2x)D01, A32 = -~(1 + 2x)D0 2 

A33 = -012 - 022 - 2(1 + x)~2D 2 

Bll = B22 = -2ixD, BI2 = - ~ t  = 2i'c 

BI3 = B31 = -i(1 + 2x)01, t/23 = B32 = -i( l  + 2x)0 2 

B33 = --4i~(1 + x)D 

CII--C22--I, C.~3=2(I+x), Cu=O,  k~l 

Ejl = 2(1 +x)nl01 +n202+'[2bD, El2 = 2xnt02 +n20 t -'~2b 

EL~ =2xn(cD+'cbOi,  E21 =nlO2+2xn201 +~2b 

E22 =hi01 +2( l+x)n20 2 +'[2bD, E23 = 2xn2"~D + %b3 2 

E3l = nl'cD + n2"[ + 2x'[bOi , E32 = -nl'c + n2 %D + 2x~b~2 

E. 

Gll 

G3z 

= nlO I + n202 + 2(I + x)'t2bD 

= G22 = 'tb, GI2 = G21 = 0, Gl3 = 2xnl, 

= hi ,  G32 = n 2, G33 = (2 + x)xb 

G23 = 2xn 2 

0ct = 0 / 0 ~ c t ,  ~ = 3/0~, O--~231-~102 ' x= . V  
l - 2 v  

K denotes the vector of body forces, ~t is the shear modulus and v is Poisson's ratio. 
For the final formulation of the boundary-value problem, we need conditions to be satisfied at g = 

0 and ~ = 1. We will return to this later. 
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2. H O M O G E N E O U S  S O L U T I O N S  

Putting K = 0 in (1.1), we will seek a solution in the form 

u = e ~ a ( ~ l ,  ~2) (2 .1)  

Substituting (2.1) into (1.1), we obtain the spectral problem in the cross-section 

L(y)a = II£(T)a, M(y)alas} = 0 (2.2) 

where OS is the boundary of  S. 
There is a voluminous literature on spectral problems of this type. A brief review, also touching on 

open problems, may be found in [7]. 
Recall that a vector function 

Uq (~) = e%~aq (2 .3)  

is called an elementary solution (ES) satisfying the homogeneous equation (1.1) and the boundary 
condition (1.2) if To is a simple eigenvalue and aq is a corresponding eigenvector. 

If Tk is a multiple eigenvalue, associated with a Jordan chain ~ . . . .  , am, where ~ is an eigenvector 
and atq (1 = 1, 2 , . . .  ,p)  are associated vectors, then every Jordan-chain may be associated with a whole 
group of elementary solutions 

Uq.(~)= (it)" (i~) "-~ 
n! aqO + (n-l)! aql+'''+aqn (2.4) 

The total number of these ESs is equal to the algebraic multiplicity of the eigenvalue Tk. 
The associated vectors are determined by solving the following boundary-value problems 

L(yq)aqs=*q, d~qs={Fq,,fq,} (2.5) 

Fql = - "~' (Tq)aq0 

1 - p t  Fqs=-~:~'(Tq)aqs_l--~.,~. (Tq)aqs_2, s = 2 , 3  ..... p 

fqs =-Gaqsl~s, s = l , 2  ..... p 

Since each of problems (2.5) is a "problem on the spectrum", it follows that a necessary condition 
for them to be sob:able is that 

I Fq~ • ~qodS + .[ fq~. ~qods = 0 (2 .6)  
S 3S 

It has been shc,wn [1] that the classical Saint-Venant solutions [8] are linear combinations of 12 
ESs corresponding to the eigenvalue To = 0. An analogous result may be established for pseudo- 
cylinders. 

We first observe that 
1 2 

a 0 =  10 ,0 ,  11, a o =  1-~2,~1, 0 } (2.7) 

3 4 
ao = I1, i, 0}, a0 = 11,-i ,  0} 

1 2 are eigenvectors of the spectral problem (2.2). Here a0, a0 correspond to the eigenvalue "/0 = 0, a30 
corresponds to the eigenvalue 71 = x and a~ corresponds to T-I = ---x. 

This result is obtained from the following representation for a vector defining the group of rigid 
displacements of the axial section S 
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u2 = i (u o _ iu o )eig + i2 (u° + iu° )e-ig + o~, 

0 
U 3 = /4  3 

where u°are the components of a linear displacements and co is a small rotation around the ~ axis. 
We ~ show that to each eigenveetor there corresponds an appropriate system of associated vectors. 
We first construct a Jordan chain for the eigenvector a ° U = 1, 2). Setting yq = O, a~ = ai in (2.5), 

we obtain the following boundary-value problems 

fl I = {2xin I , 2xin 2, 2i(1 + x)'rb}, f2 = {.tib~2,_.cilf~l ,ib} 

(2.8) 

It is easy to verify that the solvability conditions (2.6) are satisfied for these problems. The problems 
for a 2, a22 are unsolvable, from which it follows that each of the eigenvectors a~ a~ has only one associated 
vector. The eigenvectors a 3 a~ have three associated vectors each, and 

a~ ={0,0,- i~},  a~ = {0,0,-i~} (2.9) 

For a32, a 3, a~, a~ we obtain boundary-value problems similar to (2~5), except that instead of Yt we 
substitute x and -% respectively. Note that it will suffice to construct a Jordan chain for x, because for 

4 = (_l)/-I i~ (2.10) a/ 

The expressions for the vectors F 3, f3 (l = 2, 3) are 

F~ = 2xa~, f~ = {-2xn,~,-2×n2~,-2(l + x)zb~} 

Fj~ = i[2z(D+ i)a32 - 2¢a~2 + (l + 2×)ala332 ] 

F~ = i[2xa32 + 2¢(D + i)a~2 + (1 + 2x)a2a332 ] 

F~ = i[(1 + 2x)(aja~2 + a2a~3) + 4x(1 + ×)(o  + i)a32 + 2(! + x)~] 

ft33 = -i[2xnla~2 + xba~2 l 

1 ' 3  = - i [ 2 ~ n 2 a 3 2  + "rba322] 
f~3 =-i[n,a~2 + n2a232 + 2X(l + x)ba332 ] 

It is quite easy to prove the validity of  the solvability conditions for a~, but somewhat more difficult 
to do so for a~. 

3. V A R I A T I O N A L  F O R M U L A T I O N  

Consider the two boundary-value problems 

Aa = 0, 

L(+x)a ± = F ±, 

Galas = f (3.1) 

M(:l=~)a ±las = g± (3.2) 

Problem (3.1) symbolizes problems (2.8) while problem (3.2) symbolizes the boundary-value problems 
for ~ U = 3, 4; 1 = 2, 3). 

The boundary-value problem (3.2) generates in H an unbounded self-adjoint operator A with two- 
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dimensional kernel defined by the vectors a~ a~, problem ~3.2) generates self-adjoint operators L(+_x) 
with one-dimensional kernels defined by the vectors a~, a~ respectively. 

We shall assume that the solvability conditions (2.6) are satisfied for problems (3.1) and (3.2). Then 
the solutions of the,~ boundary-value problems may be written as follows [9]: 

a = a, + Cta~ + C2a ~ (3.3) 

where Ct, C2, C ± are arbitrary constants. 
The vector a. may be determined y solving a variational problem for a quadratic functional 

• (a) =q~0(a ) -2  ~ fk~kds 

~o(a)  = ~ [2glOaaa + zDa312 +lOla 3 + z(Da 1 - a 2)12 +102a 3 + "c(a I + Da 2)12 + 
s 

+2(I Ota I 12 +102a 212 )+ll)ta 2 + 0 2at 12 +2x 21Da31 ]dS 

In the subspace H.  whose elements satisfy the conditions 

(a, ~ h  = O, j = l , 2  

(3.4) 

(3.5) 

the vector a. is uniquely defined. 
The vectors a +, a: may bc determined by solving variational problems for the functionals 

* ± ( a t ) = * ~ ( a ± ) -  2ReJ F ~ ' ~ d S -  2Re J fk~'~ds 
8 85 

(3.6) 

. + 

The expression.,, for the functmnals ~o  are obtained when D is replaced by D +_ i in formula (3.5) 
and are positive-definite in the subspace /C whose elements satisfy the conditions 

(a, ~ ) i  = 0 

Thus, taking property (2.9) into account, we have reduced the construction of Saint-Venant's 
elementary solutions to two types of variational problem. 

4. THE S A I N T - V E N A N T  E L E M E N T A R Y  S O L U T I O N S  

We define the Saint-Venant ESs as the subset of ESs corresponding to eigenvalues 70 = 0, T±l = ±x. 
It follows from the preceding analysis that this subset consists of 12 ESs, which we may write as follows: 

. 2 - - . 0  

u6 (~) = -fi5 (~) = e-i`~ (i~ a4 + a~ ) 

Gr, = 0, r = l , 2  ..... 6 

u~ = ;~a~ + a,,, u8 -_ t~'° ~ + a~ (4.1) 

-,2 =-i,, - 4 

arT=b I, o'8=b 2, o.m=-~'9=e-/g(igb~+b~) 

°'12 = fill = e-igb~ 
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where I1al is the stress vector at the points of the cross-section S, and the vectors b~ are defined by 

b~ =(zD+iT)a:, + (-l)a1:ai, +~oLai, +iaJ_,  

b~, = 2×d=aa, + 2(I + ×)(xD + ij)a~, + 2i(! + ×)a~,_ I 

w i th7=  0 fo r j  = 1,2, T=  xfor j  = 3, and ), = --x forj  = 4. 
It has been shown [ 1] how such a system can be used to construct a solution of the classical Saint-Venant 

problems. The method of construction carries over almost unchanged to the case of a pseudo-cylinder. 
Suppose that the following conditions are stipulated at the ends of the cylinder 

u(O) = O, or(l) = or. (4.2) 

A Saint-Venant solution of this boundary-value problem will be sought in the form 
6 12 

U I = ~. CqUq (~)  "1- Y, CqUq (~ -- l) 
q=l q=7 

where 
12 

orl = ~, C q o r q ( ~ - l )  
q=7 

(4.3) 

We introduce the notation 

u~(0)=aq, or6+u(0)=bq, q = i , 2  ..... 6 

By (4.1) 

a j = a ~  ( j = ! , 2 , 3 , 4 ) ,  a s = a  ~, a6=a  ~ 

bl=bll,  b2=b~,  b3=b~, b , l=b  4, b , = b ~ ,  b 6 = b  4 

(4.4) 

Using the well-known properties of biorthogonality [9], it can be shown that among the distinct inner 
products 

dqp = (bq, ap)t 

dqq, d12 and d21 do not vanish, and moreover 

d,,  = J b ,dS, = = j b ,dS 
s s 

d22 = [ (~,b 2 - ~2b2t )dS 
s 

d33 . . . . .  d66 = do = i~ ~b32dS 
s 

Substituting (4.3) into the second boundary condition (4.2), after successively multiplying by aq and 
integrating, we obtain the following equations for C7 . . . .  , C12 

dljC7 +dl2Cs -i =12 Q3, dl2C7 +d22C8 -1 = I t  M 3 

C9 = ~ 0  = ~t-l d;l (QI -iQ2), Cll = - ~ 2  = tl-l di l  i( Mj +iM2) 

(4.5) 

where Ok and Mk are the components of the principal vector and principal moment of the external 
stresses a.. We emphasize that the components MR are evaluated relative to the axes of the co-moving 
system of coordinates with ~ = I. 

The constants Cq (q = 1, 2, . . . ,  6) may be determined as follows. Substituting (4.3) into the first boundary 
condition (4.2), after multiplying by bq and integrating, we obtain the algebraic system of equations 
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dqpCp = Zq Zq = - 
p=l p=l I 

In this method for constructing solutions of the Saint-Venant problems, the constants C7, • .  • ,  
C12 are determined exactly (independently of the boundary layer), as in the case of the prismatic rod, 
which partially justifies the Saint-Venant principle for pseudo-cylinders (for a complete justification 
one must prove---see [10]--that the eigenvalue problem (2.2) has no real eigenvalues other than 0, 
x and --x). 

The exact values of the constants C1, . . . .  C6 in the general case cannot be determined without 
constructing a boundary layer, which is defined by the ESs belonging to the complex eigenvalues of 
problem (2.2). For small values of the parameter e = d1-1, where d is a certain characteristic linear 
magnitude associated with S, one can establish the asymptotic nature of the result. However, a proof 
of  this fact and an analysis of specific problems are beyond the scope of this paper. 

5. S U B S T A N T I A T I O N  OF T H E  S A I N T - V E N A N T  P R I N C I P L E  F O R  
P S E U D O - C Y L I N D E R S  

As follows [7] from the fact that the elementary solutions of the homogeneous problem (1.1), (1.2) 
form a complete ~stem,  the stress vector in the section corresponding to solution of the three- 
dimensional problem may be expressed as 

÷ + c;(r-k ( ~ -  t)] o = o ~  +Y_, [c~rk(~)+ 
k (5.1) 

ok(~) = b k exp(P/k~) 

Based on (5.1), .justification of the Saint-Venant principle reduces to proving two propositions: (1) 
the principal vecters and principal moments try, ~ vanish, (2) the inequalities Im "1'~ > 0, Im ~ < 0 
hold strictly. This is the scheme of the proof for an ordinary cylinder, as implemented in [10]. 

To prove the first proposition, consider the pair of vectors 

By the properties of biorthogonality [9], since bq = 0, we have 

[V~t, Vq ]= i[(a~: ,b(t )t -(b~: ,aq ) l ]=  -i(b~:,aq ) = 0 

Taking the specific forms of the vectors (4.4), (2.7) and (2.9) into account, we obtain the proof of the first 
proposition. 

To prove the secxmd proposition, multiply Eq. (2.2) by ~. After integration and some elementary algebra, we 
obtain a quadratic equation 

where 

g0~  2 + 2gl~' + 82 = 0 ( 5 . 2 )  

go = c2 + 2c22 + 2c2 

g! = I m [ 2 ( ~ ( . ) %  + -~Da 3,a 3)~ ÷ (~ a 3 + ~'~.  14~)1 + 2x (Da3 .a3 )  I ] 

g: =2f l  z +fl  2 +2/'32 +2n~ +n~ 

Cl =lla0111, c2 =lla311 I, c 3 =lla311 x 

A =ll~(')a0+~DI311~, fl =ll~a3+~'R.IIt, f3=~IIDA3111 

.? +,a:: ,  

a 0 =aetect, a ,  = ( D a  I - a 2 ) e  I + ( D a  2 +a l ) e2  

(a,b)x=J xa.~dS, ~=e~a~ 
s 
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Using the Cauchy--Bunyakovskii inequality, it can be proved that the disoJminant of Eq. (5.2) satisfies 
the inequality A = f l  - g0g2. ~< 0. It can also be shown that A = 0 only for the eigenvector a~ and 
for linear combinations of  ~), a~, a~. It follows that, apart from Y0 = 0, 71 = x, Y-1 = --x, there are 
no other real eigenvalues, and so it follows from (5.1) that 

¢r -or c = O(exp(-ct l0) )  

(oq = Imy~ = -Imyi, 0= min(~,l-4)) 

which establishes the validity of the Saint-Venant principle. 
This research was carried out with financial support from the Russian Foundation for Basic Research 

(94-01-00159-a). 
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